Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra.

نویسندگان

  • Isabelle Philipp
  • Roland Aufschnaiter
  • Suat Ozbek
  • Stefanie Pontasch
  • Marcell Jenewein
  • Hiroshi Watanabe
  • Fabian Rentzsch
  • Thomas W Holstein
  • Bert Hobmayer
چکیده

In and evaginations of 2D cell sheets are major shape generating processes in animal development. They result from directed movement and intercalation of polarized cells associated with cell shape changes. Work on several bilaterian model organisms has emphasized the role of noncanonical Wnt signaling in cell polarization and movement. However, the molecular processes responsible for generating tissue and body shape in ancestral, prebilaterian animals are unknown. We show that noncanonical Wnt signaling acts in mass tissue movements during bud and tentacle evagination and regeneration in the cnidarian polyp Hydra. The wnt5, wnt8, frizzled2 (fz2), and dishevelled-expressing cell clusters define the positions, where bud and tentacle evaginations are initiated; wnt8, fz2, and dishevelled remain up-regulated in those epithelial cells, undergoing cell shape changes during the entire evagination process. Downstream of wnt and dsh expression, JNK activity is required for the evagination process. Multiple ectopic wnt5, wnt8, fz2, and dishevelled-expressing centers and the subsequent evagination of ectopic tentacles are induced throughout the body column by activation of Wnt/beta-Catenin signaling. Our results indicate that integration of axial patterning and tissue morphogenesis by the coordinated action of canonical and noncanonical Wnt pathways was crucial for the evolution of eumetazoan body plans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

تأثیر سه ماه تمرین هوازی بر مسیر پیام رسانی Wnt عضله‌ اسکلتی موش‌های صحرایی نر

Background: Atrophy in skeletal muscle plays an important role in disease-related tissue dysfunction such as sarcopenia. The Wnt-signaling pathway has been shown to be critical for skeletal muscle development. Current evidence suggests that exercise trainings may alter hypertrophy-related signaling in skeletal muscle. Therefore, the purpose of this study was investigating the effect of three mo...

متن کامل

Angiopoietin-like protein 8 (betatrophin) may inhibit hepatocellular carcinoma through suppressing of the Wnt signaling pathway

Objective(s): Hepatocellular carcinoma (HCC) is one of the leading fatal neoplasms and the most common primary liver malignancy worldwide. Peptide hormone ANGPTL8 (betatrophin) may act as an important regulator in HCC development through the Wnt/β-catenin pathway. We aimed to evaluate the effects of recombinant ANGPTL8 on Wnt/β-catenin signaling in human liver carcinom...

متن کامل

Control of cell polarity by noncanonical Wnt signaling in C. elegans.

The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell polarities, of cells that undergo asymmetric cell divisions. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 11  شماره 

صفحات  -

تاریخ انتشار 2009